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Isentropic Decompression of Fluids From Crustal 
and Mantle Pressures 
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Possible thermodynamic histories of H:O and CO: decompressing isentropically from crustal and upper 
mantle pressures are examined using graphs of entropy versus density with contours of constant pressure 
and mass fraction. These graphs are particularly useful for problems in dynamic processes because, in 
addition to providing thermodynamic information about entropy, density, pressure, phase, and--if more 
than one phase is present--mass fraction vapor, the graphs allow visualization of the sound speed, the 
parameter which controls the rate of propagation of disturbances in many fluid dynamics and geophysical 
problems. The sound speed is represented by the vertical gradient of the isobars on the entropy-density 
graphs and is thus easily envisioned across phase changes or as a function of pressure, mass fraction 
vapor, or density, as the 'topography' represented by the isobaric contours. This representation is 
especially useful for illustrating the low sound speeds of two-phase liquid-gas systems, e.g., the speed of a 
few meters per second characteristic of water-steam mixtures at l-bar pressure as contrasted to 1500 m s -• 
in liquid water or 450 m s -• in steam. Two simple inequalities are derived from conservation of energy, 
mass, and momentum to clarify conditions under which flow processes in single-component, single- 
phase systems are 'approximately isentropic.' Application of these inequalities to specific problems of gas 
dynamics, ascent of magma and shock decompression of gases, liquids, and solids suggests that under 
many realistic conditions, rapid magma emplacement and shock decompression of gases and liquids may 
be considered to be approximately isentropic processes. However, shock decompression of solids is 
probably not an isentropic process because viscous dissipation could contribute significantly to entropy 
production and to volume changes not accounted for in an isentropic equation of state. Entropy-density 
graphs of H:O along representative crustal geotherms show that isentropic ascent of H:O from crustal 
depths causes partial vaporization of a liquid phase as pressures decrease toward the surface pressure of 1 
bar, whereas isentropic ascent from greater depths (pressures greater than 20-50 kbar, depending on the 
geotherm chosen) causes partial condensation of a vapor phase near the surface. A comparison of the 
thermodynamic history of H:O and CO: originating at depths characteristic of kimberlite or carbonatite 
source regions shows that H:O goes through a condensation phase change near the surface (supercritical 
fluid • vapor • vapor + liquid) but CO,. expands entirely into the vapor-alone field. Because the 
condensation phase change in the H:o system might significantly alter fluid flow properties, H:O and CO: 
cannot be considered to behave in a qualitatively similar manner in the dynamics of eruption of kimberlite 
or carbonatite. The entropy-density graphs are also used to examine the isentropic release of H:O from 
shock Hugoniot states, under the commonly used assumption that thermodynamic equilibrium is main- 
tained. Upon release from pressures below 275 kbar, partial vaporization of a liquid phase occurs: upon 
release from higher pressures, partial condensation of a vapor phase occurs. 

1. INTRODUCTION 

The behavior of materials under rapid decompression, ei- 
ther from crustal pressures, as in the case of volcanism, or 
from even higher pressures, as in the case of meteorite impact, 
is strongly determined by the sound speed of the decompress- 
ing mediu m (for example, see McGetchin and Ullrich [1973], 
Sanford et al. [1975], Kieffer [1975, 1977a] for discussions of 
the effect of sound speed during volcanic or geyser eruptions; 
see Zeldovich and Razier [1966, chapter 1], for a discussion of 
decompression from shock states). In many cases the decom- 
pressing materials are multiphase, single- or multiple-com- 
ponent mixtures, such as water-steam or magma-gas mixtures. 
The sound speeds of multiphase mixtures are generally such 
complex functions of many variables (the proportions of 
phases present, pressure, temperature, bubble size, latent heat, 
and degree of equilibrium [Kieffer, 1977b]) that simple repre- 
sentation of the sound speed as a function of these variables is 
difficult. This paper introduces a simple graphical representa- 
tion of sound speeds in multiphase systems and demonstrates 
the thermodynamic and fluid dynamic conclusions which can 
be obtained from the representation. 

The speed of sound is an important fluid dynamics parame- 
ter because it is the velocity at which small disturbances are 

propagated in a material. Thus, for example, if we ask about 
the rate at which a disturbance such as a vent opening or 
pressure release is propagated into a magma chamber, the 
sound speed of the magma must be known before the answer 
can be determined. The 'dynamic' variable, the sound speed, 
depends on the 'static' state variables (pressure P, density p, 
and entropy $) through the identity 

C: =( CO•-•-p ) (1) s 

This can be demonstrated as follows (after Zeldovich and 
Razier [1966] or many fluid dynamics texts): 

Consider the density and pressure to be written as their 
undisturbed values po and Po, respectively, plus small changes 
Ap and Ap, accompanying the fluid motion. For a uniform 
fluid and, for simplicity, for a one-dimensional case, the Eu- 
lerian equation of continuity gives 

COAp COu 
cot --po cox (2) 

and the equation of motion is 

po cot- cox =- s cox (3) 
•Now at U.S. Geological Survey, Flagstaff, Arizona 86001. 

Copyright ̧ 1979 by the American Geophysical Union. 
where t is time, x is the spatial coordinate, u is the particle 
velocity (assumed to be small), and S is entropy. In all formu- 
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FiB. 1. Entropy-density relations for H•.O. Entropy is relative to a 

triple-point entropy, $ (triple point) = 0. Data are from K•nan •! a/.'s 
[1969] steam tables. The sin81e-phase field is shown as 1•) and the two- 
phase (liquid + vapor) field as 2•). Contours oœ constant pressure 
(isobars) are shown in 25-bar increments. In the two-phase field, 
contours of constant mass fraction vapor (isopleths) are shown. 
Dashed lines (a) and (b) are discussed in the text; (a) intersects the 
two-phase resion at l-bar pressure. 

lations it is assumed that the particle motions in the distur- 
bance are isentropic, so that a small change in pressure is 
related to a small change in density by hp = (&p/&O)shp. 
Denote (&P/&0)s as c: without, for the moment, any con- 
notation of sound speed. A simple wave equation can be 
obtained from (2) and (3) by differentiating (2) with respect to 
time, and (3) with respect to x and eliminating &•'u/&t &x. The 
resulting equation has the form of a classical wave equation: 

a •- Ap a •- Ap (4) 

The equation (and similar equations for Ap and u) have two 
families of solutions: 

Ap = Ap(x- ct) Ap = AP(x- ct) u = u(x- ct)(Sa) 

Ap = Ap(x + ct) Ap = AP(x + ct) u = u(x + ct)($b) 

where c is the positive root, c - + (c"P/&p )s •/•'. These solutions 
describe disturbances which propagate in the positive and 
negative x directions with the velocity c, e.g., in the first family 
of solutions above, Ap, Ap, or u are constant if x = ct + const, 
and the disturbance hp or AP therefore propagates in the +x 
direction. Therefore c is the speed at which disturbances are 
propagated through materials. 

This brief review is a reminder that, although the derivative 
(&P/&p)s is normally thought of in terms of the compres- 
sibility, K = p(&P/&p)s, a static parameter, it is important in 
the form c •' - (&P/&p)s in dynamic problems as well. In cases 
where the sound speed has been determined from pressure- 
density data at constant entropy and compared with the sound 
speed determined from dynamic ultrasonic data, the agree- 
ment between the static and dynamic methods is good to 
within about 10% (the comparison shown by Kieffer [1977b, 
Figure 2] is typical). Differences may be due to experimental 
uncertainties, dissipation in a dynamic experiment, or dis- 
persio_n (frequency dependence). 

lsentropic processes are not only 0f geologic interest in the 
propagation of small-amplitude disturbances as discussed 
above, but also in a number of problems involving large pres- 
sure, density, or temperature disturbances. In these problems, 
processes which can be demonstrated to be adiabatic (dQ = 0, 
where dQ is the heat transferred) are frequently assumed to be 
isentropic (dS - 0, where dS is the entropy change). Two 
examples of processes assumed to be adiabatic and isentropic 
are ascent of magma [Rumble, 1976] and release from shock 
compression during meteorite impacts and laboratory shock 
experiments [Rice and Walsh, 1957; McQueen and Marsh, 
1960; Ahrens and Rosenberg, 1968]. Although adiabatic proc- 
esses, being irreversible, are not necessarily isentropic (see 
discussion below), the assumption of constant entropy so 
greatly simplifies the mathematical and thermodynamic treat- 
ment of many problems, particularly those of geologic systems 
for which material properties are complex, that it is useful to 
apply the isentropic assumption whenever reasonably justified. 
Thus in section 2 of this paper we consider a criterion accord- 
ing to which processes may be considered 'approximately 
isentropic.' 

We describe in section 3 entropy-density graphs which we 
have found offer a simple visual representation of a number of 
thermodynamic variables involved in isentropic processes. In 
section 4 we demonstrate how the graphs can be used to 
examine the behavior of volatiles (1) ascending in volcanic 
systems originating at different depths within the earth, and (2) 
decompressing from a shock Hugoniot state. Entropy-density 
graphs for the two systems considered, H•.O and CO•., are 
presented in Figures I and 2, respectively. 

2. ISENTROPIC PROCESSES 

We propose below criteria which might be used to check 
if single-component, single-phase flows are 'approximately 
isentropic.' In the following discussion it is assumed that 
the usual results of thermodynamics can be applied to 
material motions. This can generally be done if the instanta- 
neous local thermodynamic state is considered and if the rates 
of change of the parameters describing the local state are not 
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too large. In particular, it is assumed that the characteristic 
times of the problem (to) are larger than relaxation times (r) 
for material changes (such as phase changes, nucleation and 
growth processes, etc.), so that flows are 'slow' in terms of 
departure from thermodynamic equilibrium. (The word slow 
takes on a wide range of values, depending on whether the 
relaxation times are those associated with molecular trans- 

lations, rotations, 'vibrations, or dissociations in gas flow (r = 
10-•ø-10 -5 s) or those of nucleation and growth of metamor- 
phic minerals in viscous solids (r perhaps as large as 10 TM s)!) It 
is also assumed that the substances considered are fluidlike in 

that they cannot support shear stresses and that they are 
described by linear stress and heat conduction relations. 

Similar criteria for isentropic flow have been given by Bat- 
chelor [1967, pp. 164-171] and Thompson [1972, chapter 3]. 
The criteria follow from consideration of the total material 

derivative of a generalized equation-of-state of the form P = 
eo, s): 

Dt - s •- + (6a) o Dt 

or 

DP_c2D p (PP) DS (6b) Dt -•- + -• o Dt 
In these expressions, D/Dt is the total derivative, P is pressure, 
p is density, S is entropy, c is the adiabatic sound speed, and t 
is time. For an isentropic process, S is constant and therefore 
the equation-of-state is a function of density only, P = P(p). 
This would be true in the equations above if 

c• ' Dp >> •- o -•- (7) 
The partial derivatives on the right-hand side can be expressed 
in terms of the fluid flow parameters through use of the conti- 
nuity, momentum, and energy equations. As there are subtle 
assumptions about the relative magnitudes of forces, circum- 
stances of the particular flow under consideration, and proper- 
ties of the fluid in the following section, the reader is referred 
to Thompson [1972, pp. 138-144] for details. For example, the 
equations take account of the gravitational field, but it is not 
important if 10 << CoX'/g, where 10 is a characteristic length, Co is 
the sound speed, and g is the acceleration of gravity. It is 
assumed negligible in the following discussion. The resulting 
approximation for flow to be considered approximately isen- 
tropic is 

1 (•v) [I'+kV•'T] (8) IV.ul>> 
where u is the flow velocity, C• is the specific heat, v is the 
volume, T is the temperature, F is the dissipation factor (which 
represents the part of the work going into deformation), k is 
the thermal conductivity, V' u is the divergence of the velocity 
(•u/•x + •u/•y + •u/•z in Cartesian coordinates), and V•'T 
is the Laplacian of the temperature (P•'T/Px •' + P•'T/Py •' + 
•:T/•z •' in Cartesian coordinates). The physical interpretation 
of this equation is that the overall rate of volume change (on 
the left-hand side of the equation) must be large compared to 
the rate of volume change due to viscous heating (first term on 
the right) and thermal conduction (second term on the right) 
for an isentropic process. The equation is most easily consid- 
ered for general situations by forming nondimensional vari- 
ables as follows: 

t0 0 
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Fig. 2. Entropy-density relations for CO•_. Entropy is relative to 

S(0 K) = 0. Data are from Newitt et al. [ 1956]. The single-phase field is 
shown as 1½; the two-phase regions (solid + vapor)and (liquid + 
vapor) as 2½; and the three-phase region bounded by the triple-point 
wedge as 3½. Note the small area of the (solid + vapor) field which lies 
below the lower triple point, at higher entropies and lower densities 
than the (liquid + vapor) field. Contours of constant pressure (iso- 
bars) are shown in 10-bar increments at pressures greater than 10 bars. 
In the two-phase field, contours of constant mass fraction vapor 
(isopleths) are shown. Dashed line (a) intersects the two-phase region 
at 1-bar pressure. 

U = uluo P = lo •' rluuo •' • = T/To 

Re = pouolo/# = uolo/v Pr = #Ce/k = 

where the length 10 chosen is a characteristic length over which 
a characteristic velocity change u0, and a characteristic temper- 
ature change To, are obtained (in a time to), i.e., spatial differ- 
entiation of a quantity is assumed to change its magnitude by 
10 -•. We assume a Newtonian fluid and denote by # the ordi- 
nary shear viscosity and v the kinematic viscosity; p0 is the 
reference density and K is the thermal diffusivity. Re is the 
classical Reynolds number and Pr is the Prandtl number. The 
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nondimensional form of the condition that a flow process be 
approximately isentropic is then 

IV.ul>> CTo 1 ) P + v:f (9) 

(Here v0 is the specific volume, l/p0.) In general, I.ul << 
, (U/Uo) + (X/1o) and, specifically, V.U = 0 for incompressible 
flow. However, if the flow is compressible, then V.U • 1. We 
assume from here on that we are dealing with fluid flow 
situations in which compressibility is important. If the dimen- 
sionless variables have been properly chosen, then V•'• and •' 
are approximately unity and the inequality becomes 

1 >> (10a) 

Therefore only four dimensionless parameters determine 
whether or not the flow is approximately isentropic: (1) the 
ratio of inertial to viscous forces given by the Reynolds num- 
ber; (2) the dimensionless volume change given by T/vo' 
(•v/•T)l, = Ta, where a is the thermal expansion coeffi- 
cient; (3) the ratio of kinetic to internal energy given by 
Ci, T; and (4) the ratio of viscous to thermal diffusivity given by 
the Prandtl number. If it is assumed that the two terms on the 

right-hand side do not cancel at all points in the flow field, 
(10a) reduces to the two subsidiary conditions 

1 uo 2 

(the viscous inequality) and 

<<1 (10b) 

1 1 

Kr << (0c) 
(the thermal inequality) 

Special Cases 

Gases. In general, for gases, Ta • 1,.so (10b) and (10c) 
reduce further to 

and 

1 uo 2 
Re C•,To 

<< 1 (11a) 

1 1 

<<l 
Equation (11a) is commonly written in terms of the Eckert 
number E (which, for example, for a perfect gas is E = ('• - 
1)M:, where 3• is the adiabatic exponent and M is the M ach 
number). Equation (11a) then becomes E/Re << 1. For many 
gases, Re • Molo/Ao, where M0 is the Mach number, Uo/C, and 
A0 is the molecular mean free path. The ratio/0/A0 is usually 
large in physical situations where a continuum model for 
material properties is applied, so even for fairly small Mach 
number the Reynolds number of gas flow is large. Since 
C1, To is of order 1 only for supersonic flows (which are also 
high Reynolds number), it can be seen that (11a) is satisfied 
for most gas flows. Similarly, since the Prandtl number for 
gases is in the range 2/3-1 [Thompson, 1972, p. 110], the 
inequality (l lb) is also satisfied for most gas flows. Thus to a 
good approximation, flow problems typically considered in 
classical compressible gas dynamics are justifiably considered 
to be isentropic. 

Liquids and solids. At temperatures below 3000 K, Ta for 
liquids and solids may be expected to be of order 0.1 or less, so 
(10a) and (10b) become slightly less restrictive than for gases: 

1 uø•' I •e cvro << 10 (12a) 
and 

1 1 

<< lo (12b) 

Generalization beyond these equations is not warranted be- 
cause processes of geologic interest can involve Reynolds num- 
bers ranging from 10 -'7 to llY (at least) and Prandtl numbers 
ranging from 1 to 10 •'ø. The samples of fluid flow considered in 
this paper are (1) ascent of fluids or magma in volcanic erup- 
tions and (2) decompression of fluids from the shock state. 

Ascent of magma: Viscosities of magmas vary from 10 •' to 
104 P for basaltic or andesitic magmas to 105-10 • P for granitic 
magmas. Basaltic magmas frequently exhibit high Reynolds 
number flow when they are observed on the surface, e.g., in 
Hawaiian lava rivers where u0 can be 10 a cm s-' and 10 about 
10 a cm, the Reynolds number will be greater than unity for 
viscosities less than 106, i.e., for most basaltic magmas. Shaw 
[1965, p. 138] has postulated that emplacement of granitic 
magmas may also occur at Reynolds numbers appreciably 
greater than unity, as high as 10 a. Therefore most magma 
emplacement and flow conditions (to the extent that they can 
be idealized as single-component, single-phase systems) may 
be approximately isentropic, the most notable exception being 
emplacement of granitic magmas at low Reynolds numbers. 

The ascent of volatiles with or through a magma must be 
considered separately. If the volatiles comprise a small volume 
fraction of the magma, and if they are dispersed in small 
vesicles of a separate liquid or gas phase, heat transfer between 
the volatile phase and the silicate phase might make the ascent 
of the volatile phase more nearly isothermal than adiabatic. 
Even though the total entropy of the system might be constant, 
the entropy of the individual phases might vary. Thus when 
the volatile fraction is small, the real ascent behavior may lie 
between isothermal and adiabatic. 

For large volatile contents, as in eruptions of kimberlites 
and carbonatites, or perhaps as in phreatic explosions, a dis- 
persed solid and/or liquid phase may be thermally decoupled 
from the gas phase. In this case, the dispersed phase may 
appreciably alter the effective viscosity but not otherwise influ- 
ence the thermal behavior of the flow. It is to such cases that 

the discussion of volatile decompression in section 4 of this 
paper applies. 

Decompression following shock waves: It is commonly as- 
sumed that decompression of gases, liquids, and solids follow- 
ing shock comparison is isentropic [Bradley, 1962, chapter 2; 
McQueen and Marsh, 1960]. The inequalities (1 la) and (1 lb) 
are generally satisfied for expanding gases because the Prandtl 
number is of the order unity and the Reynolds number is 
usually very high. Inequalities (12a) and (12b) should be satis- 
fied for low-viscosity liquids (# < 10 • P). Therefore the isen- 
tropic thermodynamic paths discussed in the next section of 
this paper for H:O and CO: liquids and gases may be ex- 
pected to approximate the real thermodynamic history ob- 
tained in shock release paths, if local thermodynamic equi- 
librium is obtained. 

I t is not clear that the decompression of solids by rarefaction 
waves is approximately isentropic. Thermal conduction effects 
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are not important: notice that the thermal inequality (12b) 
reduces to become independent of the viscosity: 

I I I K •ee •rr = u-•'o << 10 (13) 
For K "• 10 -a cm 2 s -• and characteristic rarefaction velocities of 

I km s-•, this inequality holds for all characteristic distances l0 
greater than 10 -9cm, and hence entropy production and vol- 
ume changes due to thermal conduction are negligible (as is 
commonly recognized in the assumption of the adiabatic na- 
ture of shock flow). 

It is not equally obvious that the viscous inequality (12a) 
can be satisfied. A major problem in consideration of this is 
our lack of knowledge of effective viscosity of solids at the high 
strain rates characteristic of shock processes, but a few limits 
can be placed on viscosities which would result in satisfaction 
of the inequality (12a). For u0 • I km s -1 and Uo2/CpTo • 1, 
(12a) simply requires that v << 11Y10 (10 in centimeters). If 10 is 
as large as I cm (which it probably is not), then v < 11Y P, i.e., 
the viscosity must be less than that of, say, andesitic magma. 
Since 10 is probably much smaller than 1 cm, a correspondingly 
lower viscosity is required. It is not apparent that the com- 
pressed solid undergoing decompression can attain such low 
viscosities by any known mechanism (e.g., formation of theto- 
morphic glass, glass lamellae, dislocation motion). On the 
other hand, it has not been demonstrated here that deviations 
from isentropeticity would cause measurable changes in shock 
equation-of-state parameters, such as free surface particle ve- 
locities or release volumes. In summary, we recommend that 
the assumption of isentropic flow in decompressing solids be 
critically examined to determine if viscous dissipation is con- 
tributing significantly to entropy production and to volume 
changes not accounted for in an isentropic equation of state. 

We reemphasize here that this discussion has been restricted 
to single-component, single-phase systems and that generaliza- 
tion of (6)-(13) is required for application to multicomponent 
or multiphase systems. 

3. DESCRIPTION OF THE GRAPHS 

Consider first the entropy-density graphs for H•O shown in 
Figure 1. The saturation curve is shown as a heavy line sepa- 
rating the two-phase region in the lower left (labeled as 2½) 
from the liquid-alone and the vapor-alone regions on the right 
and top (labeled as 1½). At entropies less than the critical point 
entropy, the single phase is liquid and the heavy curve repre- 
sents the boundary between liquid and (liquid + vapor) re- 
gions. At entropies greater than the critical point entropy, the 
single phase is vapor and the heavy curve is the boundary 
between vapor and (vapor + liquid) regions. 

On the entropy-density graph of CO• (Figure 2) the satura- 
tion curve is also shown as a heavy line separating the two- 
phase and one-phase regions. At entropies less than the critical 
point entropy, liquid is in equilibrium with (liquid + vapor) 
across the saturation curve; at entropies greater than the criti- 
cal point entropy, vapor is in equilibrium with (vapor + liq- 
uid) across the curve. CO• differs from H•O in that it has a 
triple point at pressures of geological interest: at 5.1 bars, 
-56.6øC. In entropy-density space the triple point appears as 
a wedge-shaped region cutting up toward the left in Figure 2; it 
is open at the top end because of the entropy and density 
discontinuities between the liquid and solid phases at the triple 
point. At the far upper left the solid-vapor saturation curve of 
'dry ice' is shown. The solid-liquid curve cannot be shown 
because only a portion of the melting curve of CO2 has been 
measured [Bridgman, 1914] and because entropies and vol- 

umes for the solid and liquid phases along the melting curve 
have not, to our knowledge, been measured. 

It is the addition of contours of the intensive thermody- 
namic variables, pressure and mass fraction, onto these graphs 
which makes them useful for solution of problems relating to 
flow processes. The lines which cut across both figures, gener- 
ally from upper left to lower right, are isobars. The lines which 
cut across, generally toward the upper right but with strong 
curvatures toward the saturation curve, are isopleths of mass 
fraction vapor. Isopleths cannot be plotted through the wedge- 
shaped region bounded by the triple point for CO• because of 
the lack of thermodynamic data on the liquid-solid equilib- 
rium curve. 

The graphs are useful for representation of isentropic proc- 
esses and associated changes of state and thermodynamic vari- 
ables. Isentropic processes are represented by vertical lines on 
these graphs and isentropic decompression by paths from top 
to bottom. Phase changes and density changes with pressure 
increases or decreases during isentropic processes are easily 
seen. At any given pressure (read from the isobars) it is pos- 
sible to read the total entropy, density, and, in the two-phase 
region, mass fraction of the phases. Furthermore, the sound 
speed which by definition is the directional derivative along 
vertical lines of constant entropy, c = (PP/Pp)s •/•, is simply 
proportional to the vertical gradient of the isobaric contours. 
These graphs are constructed on a logarithmic scale because 
the great change of density possible for the vapor phase re- 
quires a logarithmic axis and the definition of sound speed 
requires that both axes then be logarithmic in order to preserve 
a direct proportionality: 

21ogc= 1og(C?•• P) (14) 
For isobars, c• P = const. Therefore if the spacing (c•p) between 
isobars on an isentrope is large, c is small, and vice-versa. 

By viewing these graphs as 'topo-maps,' the reader can 
obtain a visual impression of the magnitude of the sound speed 
changes which occur across phase changes and as a function of 
pressure, density, or mass fraction. Consider two specific ex- 
amples shown on the water-steam graph (Figure 1): the isen- 
trope (a) at 7.4 J g-• K -• and the isentrope (b) at 3 J g-• K -•. 
The first of these (a) is located entirely within the vapor field at 
pressures above I bar. The spacings of the isobaric contours 
represent typical vapor sound speeds characteristic of steam, 
about 450 m s -• at l-bar pressure. At higher pressures the 
contours are more closely spaced (i.e., the topography is 
'steeper'), indicating that the sound speed increases with in- 
creasing pressure. The second isentrope, (b), passes through 
two regions. It is in the liquid field above the saturation curve, 
and the high sound speed of liquid water (1500 m s -•) is 
represented by the 'cliff' shown by the isobaric contours. The 
isentrope lies in the two-phase liquid-vapor field below the 
saturation curve; in this region, the typically low sound speeds 
of two-phase mixtures [Kieffer, 1977b] are represented as 'flat- 
lands' by the isobaric contours. For example, in this region, at 
1-bar pressure and for mass fractions less than l0 -a, the sound 
speed is a few tens of meters per second or less; it is 113 m s -• 
at mass fraction 0. I. The sound speeds represented graphically 
in the two-phase region are 'equilibrium sound speeds' in the 
terminology used by Kieffer [1977b, p. 2901]. They are sound 
speeds under conditions where heat and mass transfer between 
the phases occur rapidly enough that thermodynamic equilib- 
rium between the liquid and vapor phases is maintained; ef- 
fects of surface tension on sound speed are not included in this 
representati6n. 
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cycle of Figure 1) showin8 four typical continental •cothcrms: •co- 
thcrm A, MocOr•or • Bo•, [1974]; •cothcrm B, Boyd • •ixon 
[ 1973]; •cothcrm C, Bird [ 1975]; and •cothcrm D, Mercier ond Coner 
[1974]. Th• base of the crust (40 kin, 12 kbar) is indicated by a square 
on the •cothcrms A, C, and D. Dashed segments on the •cothcrms 
represent extrapolations above 800øC. Densities and cntropics corrc- 
spondin• to the •cothcrms arc calculated as described in the text. 

Figures 1 and 2 show a light dashed vertical line which 
passes through the saturation curve at 1-bar pressure (labeled 
(a)): any geologic decompression which has an entropy less 
than the value at this line will result in conversion of the fluid 

at depth into a multiphase system before it reaches the surface 
pressure of 1 bar. In the case of H20 the multiphase system is 
(liquid + vapor) (the ice stability fields are not considered 
here); in the case of CO2 the multiphase systems encountered 
first by isentropes of decreasing entropy are: (solid + vapor), 
(liquid + vapor), (solid + liquid + vapor), and (solid + 
vapor). 

4. APPLICATION TO GEOLOGIC PROBLEMS 

To illustrate the utility of these graphs, we examine here two 
processes assumed to occur isentropically: (1) ascent of mag- 
matic fluids (e.g., in eruptions of volcanoes or diatremes) and 
(2) shock decompression of HaO from pressures to 250 kbar. 

Ascent of magmatic fluids. We have taken H•O and CO• as 
representative end member compositions for magmatic fluids 
(H•O for normal volcanic eruptions and, perhaps, some kim- 
berlite eruptions; CO2 for kimberlite and carbonatite erup- 
tions). The effects of dissolved gases and salts are not included 
at this time for lack of thermodynamic data. 

In order to specify the initial state of H•O in the crust and 
mantle, we must specify entropies and densities of H•O along 
representative continental geotherms. (Each geotherm was cal- 
culated to 1200øC. The maximum entropy obtained was 5.2 J 
g-• K-•.) Entropies and densities to 800øC (varying pressures, 
depending on the geotherm used) were' obtained from the 
internally consistent data of Keenan et al. [ 1969], Helgeson and 
Kirkham [1974], and Delany and Helgeson [1978]. Entropies 
and densities at temperatures between 800 ø and 1200øC and at 
pressures greater than 10 kbar were extrapolated as follows: 
(1) densities, by a linear extrapolation of volume-temperature- 
pressure data [Delany and Helgeson, 1978, Figure 6]; (2) en- 
tropies, by a quadratic least-squares fit of entropy-temper- 

ature-pressure data [Delany and Helgeson, 1978, Figures 4 and 
5] from 400ø-800øC. 

The entropy-density curves thus obtained for H•O along 
representative continental geotherms are shown in Figure 3, 
which is an enlargement of the top cycle of Figure 1. Consider 
(using Figures 3 and 1) the isentropic ascent of H•O originat- 
ing at various depths along these geotherms. 

H20 originating at crustal depths (to the left of the square 
symbol on each geotherm) has, according to all geotherms, an 
entropy less than the critical point entropy of 4.4 J g-• K -•. 
Thus upon isentropic ascent, an'y H•O, which is initially a 
supercritical fluid (SCF), ascends through the supercritical 
field into the liquid (L) field and then into the two-phase field 
(L + V), at which point part of the liquid vaporizes. From the 
isopleths plotted, it is possible to read the mass fraction of 
H•O transformed into vapor by the time that the H•O reaches 
the surface pressure of 1 bar, simply by reading the mass 
fraction at the point where the ascent path crosses the 1-bar 
isobar. For example, 20-30% of water ascending from the base 
of the crust (or upper mantle according to one geotherm) with 
an entropy of 3 J g-• K -• is transformed to vapor. A similar 
succession of phase changes (SCF • L -• L + V) occurs if H•O 
originates in the upper mantle at any depth which gives an 
initial entropy less than the critical point entropy of 4.4 J g-• 
K -1. 

A different succession of phase changes is observed if H20 
originates with an entropy higher than the critical point en- 
tropy, e.g., deeper than 100 km on the Mercier and Carter 
[1974] geotherm; 60 km on the Bird [1975] geotherm, or 150 
km on the McGregor and Basu [1974] geotherm. The HaO is 
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Fig. 4. Pressure-temperature relations for H20. Liquid and vapor 
fields, labeled (L) and (I/), are separated by the saturation curve 
(heavy line). Contours of constant entropy (isentropes) are shown as 
solid lines, labeled in J g-• K -•. Contours of constant volume (iso- 
chores) are shown as dashed lines labeled in cm 3 g-•. Contours of 
constant mass fraction (isopleths) in the two-phase region (shown on 
Figures I and 3)cannot be shown in pressure-temperature space 
because the two-phase region is degenerate along the saturation curve. 
The four geotherms A, B, C, and D are the same as in Figure 3, and 
the dashed segments are the same extrapolated regions. The Hugoniot 
[from Rice and l, Ya/sh, 1957] is the same as shown in Figure 7. 
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FiB. 5. Pressure-volume relations for H=O. The single-phase •cld is shown as 1• with the liquid (•) and vapor (F) 
rc•ions labeled separately; the two-phase (liquid + vapor) •cld is shown as 2•. Contours of constant entropy (iscntropcs) 
arc shown as solid lines, labeled in J •-' K-'. Contours of constant mass fraction (isoplcths) arc shown as dashed lines. The 
three •cothcrms A, B, and C arc the same as in Figure 3, and dashed segments arc the same extrapolated rc•ions. Ocothcrm 
D, not shown, overlaps A. The Hu•oniot [from •i• •nJ •/•, 1957] is the same as shown in Figure ?. 

originally in the supercritical state, but as it decompresses it 
passes into the vapor phase (see e.g., the isentrope descending 
at 5.0 J g-• K-•). If the entropy is less than 7.4 J g-• K -•, as it 
is for the limited temperature range calculated, then the fluid 
passes from the vapor phase into the two-phase field before it 
reaches the surface, i.e., liquid water is obtained by con- 
densation of the vapor phase upon ascent. Examination of the 
mass fraction isopleths obtained on expansion to 1 bar from 
these geotherms indicates that at least 30%, and as much as 
50% (at the critical point entropy), of the vapor fraction may 
condense on ascent of mantle fluids. This phenomenon is con- 
trary to our intuition about the behavior of such systems. 

Changes in acoustic properties of the fluids across the phase 
changes are dramatically shown on Figures 1 and 3 by varia- 
tions in isobar spacings. For example, the supercritical fluid 
ascending with entropy of 3 J g-• K -• has the sound speed of a 
'liquid' (approximately 1500 m s-•), relatively independent of 
pressure until the two-phase field is entered at about 55 bars, 
as shown by the close ,spacing of the isobars in the liquid field. 
There is a dramatic discontinuous decrease in the sound speed, 
as shown by the change in spacing of the isobars (to about 30 
m s -•) upon entry into the two-phase field, and a further 
continuous decrease to a few meters per second as the fluid 
decompresses to 1-bar pressure. In contrast, although a super- 
critical fluid ascending with entropy of 5 J g-• K -• has the 
sound speed of a liquid at high pressures, the sound speed 
gradually decreases as the pressure decreases toward the satu- 
ration curve. As the fluid enters the two-phase field at about 
190-bar pressure, there is a slight (about 10%) discontinuity in 
the sound speed. With further decompression to 1-bar pressure 
and condensation of a liquid from the vapor phase, the sound 
speed of the two-phase mixture continuously decreases to a 
final value of about 30 m s -•. A detailed discussion of sound 

speeds in the water-steam system is given by Kieffer [1977b]. 
Although some of the same conclusions can be obtained by 

examination of graphs of other pairs of thermodynamic vari- 
ables, we believe that the entropy-density graphs are unique in 
their ability to convey information of interest to both petrolo- 
gists and geophysicists because information about the sound 
speed, the first derivative of a thermodynamic quantity, is so 
easily conveyed. To allow the reader to cross check the con- 
clusions we have obtained for H:O against those reached by 

use of more familiar thermodynamic graphs, we show the 
same adiabats and geotherms discussed above on a variety of 
graphs in Figure 4 (P-T), Figure 5 (P-V), and Figure 6 (T-S 
and P-S). As far as possible, the same thermodynamic infor- 
mation and schematic paths shown in Figures 1 and 3 are 
indicated on Figures 4, 5, and 6. Details are discussed in the 
figure captions. 

As a specific example of this type of analysis, we consider 
the ascent of H:O from a kimberlite reservoir. McGetchin and 
Ullrich [1973, p. 1844] calculated that H:O originating in a 
kimberlite reservoir at 100-km depth, 1000øC would ascend 
nearly isothermally to 10-km depth (calculated temperature 
954øC). At this pressure and temperature, H:O has an entropy 
of about 5 J g-• K -• and therefore, upon further ascent, passes 
from supercritical fluid to vapor to (vapor + liquid) as dis- 
cussed above. If nucleation of liquid droplets occurs rapidly so 
that the system maintains continuous local thermodynamic 
equilibrium, there will be a discontinuous change in the sound 
speed as the two-phase region is entered. (McGetchin and 
Ullrich assume supercooling of the vapor and thus do not deal 
with the possible two-phase flow problem.) It is well known 
that sound speed discontinuities give rise to perturbations in 
the fluid flow [Zeldovich and Razier, 1966, chapter 1, sections 
17, 18, 19, chapter 11, section 20]. Although calculations of 
details of the fluid flow properties are not within the scope of 
this paper, it seems reasonable that the fluid flow changes 
might be of sufficient magnitude to significantly affect the 
nature of the kimberlite eruption and the structure of the maar 
complex formed during kimberlite eruption because as much 
as 30-50% of the vapor can condense before 1-bar pressure is 
reached. In particular, since H:O at 5 J g-• K -• enters the two- 
phase field at a pressure of about 200 bars, structures at or 
above depths where this pressure is reached (•< 1 km) might 
show features related to the transition to two-phase fluid flow. 

Because of the lack of thermodynamic data for CO: at 
pressures above 3 kbar and temperatures above 150øC, it is 
not possible to estimate the properties of CO: along geotherms 
with sufficient accuracy to warrant the type of analysis done 
for H:O along geotherms. Instead, we consider only a simple 
comparison of the behavior of CO: and H:O originating under 
similar conditions in a kimberlite reservoir. In order to com- 

pare the behavior of CO: with H:O, we extrapolate the entropy 
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of CO,, known at 3 kbar, 150øC [Newitt et al., 1956], to 
1000øC through the thermodynamic identity 

T dS = dH - V dP (i5) 

which, at constant pressure, gives 

dS dH Cp T T dT (16a) 
or 

dS = dT (16b) 

Taking Tt = 150øC (423 K), Tt = 1000øC (1273 K), Cp = const 
• 1.5 J g-1 K-1 [Newitt et al., 1956, p. 113], we obtain 
S(1000øC, 3 kbar) • 5 J g-i K-1. This entropy is, coinci- 
dentally, the same as that of H,.O under similar conditions. 
Examination of Figure 2 shows that CO,. with this entropy (in 
fact, with any entropy greater than 4.7 J g-i K-i, will ascend 
isentropically to the surface entirely as a vapor phase. Unlike 
H,.O, CO,. ascending from 10 km, 1000øC will undergo no 
phase changes during ascent and therefore should not be sub- 
jected to discontinuities in the sound speed. This conclusion 
holds for systems with higher initial entropies or for systems in 
which the entropy increases upon ascent (up to entropies of 7.4 
j g-1 K-i for which H,.O will also remain in the vapor phase 
entirely to the surface). H,.O and CO,. systems therefore should 
not be treated as qualitatively similar systems. Field evidence 
should be sought at kimberlite and carbonatite locales, partic- 
ularly those exposed by erosion to depths of 1 km, to reflect 

possible structural variations arising from differing emplace- 
ment dynamics in H,O-dominated versus CO,-dominated sys- 
tems. 

Isentropic decompression of CO, with lower entropies than 
4.7 J g-i K-i (e.g., originating at 1000øC, but at higher pres- 
sures than considered above) will result in phase changes 
before 1-bar pressure is reached as shown in Table 1. A rough 
estimate of the magnitude of the (- V dP) term in (15) suggests 
that the decrease in entropy due to pressure increases will be 
about 0.2 J g- 1 K- 1 kbar- 1. Therefore for temperatures greater 
than 1000øC (higher temperatures increase entropy) and pres- 
sures between 3 and 12 kbar (40 km), the entropy of CO, 
should be greater than 3 J g-i K-1. Hence for CO, fluids 
arising from crustal pressures, only cases 1, 2, 3, and 4 in Table 
I present plausible thermodynamic paths, although P-T condi- 
tions might be contrived to allow cases 5 and 6. Only addi- 
tional high-pressure, high-temperature thermodynamic data 
for CO, will allow specific conclusions to be drawn, but plot- 
ting of such data on these entropy-density graphs will allow 
quick determination of possible phase changes during isen- 
tropic decompression of CO, from crustal and mantle pres- 
sures. 

Isentropic release from shock compression. The history of 
H,O undergoing shock decompression can be examined in 
detail with the use of entropy-density graphs if release 'adia- 
bats' are assumed to be isentropes following vertical paths on 
the graph and if continuous equilibrium is assumed. The H u- 
goniot of water from 40 to 450 kbar is shown on Figure 7. The 
Hugoniot is centered at 1 bar, 20øC. 



KIEFFER AND DELANY: ISENTROPIC DECOMPRESSION OF FLUIDS 1619 

TABLE 1. lsentropic Decompression Paths for COo. From Crustal or 
Mantle Pressures to I Bar 

Entropy Range S, J g-• K -• Phase Changes 

1. >4.7 

2. 4.7-4.2(TP1) 
3. 4.2-3.55 (CP) 

4. 3.55-2.64 (TP2) 

5. 2.64-1.72 (TP3) 

6. <1.72 

SCF• V 

SCF-• V-• (S + V) 
SCF-• V-•(VonlyatTPl)-•(S + V)or 

SCF -• V-• (L + V)-• (S + V) 
SCF --, L -• (L + V)--, (S + V) or SCF 

--, L -• (L only at TP2) -• (S + V) 
SCF -• L -• (L + S) -• (S + V) or SCF 

-• L --, (S only at TP3) -• (S + V) 
{SCF • L -, S}* • (S + V) 

SCF, supercritical fluid; S, solid; V, vapor; L, liquid. TP1 refers to 
the entropy of vapor at the triple point; TP2, the entropy of liquid at 
the triple point; TP3, the entropy of solid at the triple point; and CP, 
the entropy of the critical point. 

*Unknown because melting curve data do not exist. 

Hugoniot states less than 50 kbar have entropies less than 
that required for vaporization of H:O on release to l-bar 
pressure. A vertical release isentrope from such a shock state 
lies entirely within the liquid water field at all pressures above 
I bar, as can be seen by examination of the point where the 1- 
bar isobar intersects the saturation curve on Figures I or 7. 

H ugoniot states above 50 kbar have entropies sufficient to 
allow partial vaporization of H:O on release to l-bar pressure. 
The isobars and isopleths plotted on the entropy-density 
graphs allow determination of the approximate pressure at 
Which vaporization begins and of the mass fraction vaporized 
as a function of pressure on each release isentrope. For exam- 
ple, upon release from 60 kbar, vaporization begins at approxi- 
mately 2-bars pressure, and •6% of the liquid is vaporized by 
decompression to I bar. Similar behavior occurs to 275 kbar, 
from which decompression is through the critical point (220.9 
bars, 4.4 J g-• K -•) and 50% of the liquid is vaporized upon 
decompression. 

Upon decompression from pressures greater than 275 kbar, 
a different behavior is encountered. The compressed liquid 
expands isentropically around the critical point into the vapor 
phase, and as decompression brings the material to pressures 
lower than the critical pressure, a part of the vapor condenses 
to give a liquid fraction. For example, from 300 kbar, liquid 
begins condensing at about 225 bars, and nearly 50% of the 
vapor condenses. From 500 kbar, liquid begins condensing at 
75 bars and approximately 20% of the vapor condenses. At 
very high shock pressures (order of a megabar), the unloading 
isentrope may remain entirely in the vapor region at all pres- 
sures greater than 1 bar (entropies greater than 7.4 J g-• K-•). 

The behavior described above is thermodynamically re- 
quired if isentropic conditions are obeyed. The kinetics of 
nucleation and growth of vapor bubbles (below 275 kbar) and 
liquid droplets (above 275 kbar) may control the actual condi- 
tions obtained. Zeldovich and Razier [1966, p. 764], in an 
analysis of the vaporization of solids by shock waves, suggest 
that the rate of nucleation of vapor bubbles or liquid droplets 
is so slow that the isentropes observed would actually be those 
of superheated liquids or subcooled vapors. However, there is 
ample evidence from laboratory equation-of-state measure- 
ments and petrographic properties of shocked rocks initially 
containing water that at least partial vaporization occurs 
(summarized by Kieffer et al. [1976, pp. 73-83]); the degree to 
which equilibrium is obtained has not been determined. Exper- 
imental evidence for condensation on release from high shock 

pressures does not appear to exist but should be obtainable in 
laboratory experiments with technology currently available, 
and the experiments would contribute a great deal to our 
understanding of isentropic processes and phase change kinet- 
ics under shock conditions since sufficient thermodynamic 
data exist to specify what the equilibrium states should be. 

5. CONCLUSIONS 

According to the two inequalities presented in (10a)and 
(10b), the flow of single-phase magmatic fluids and the rare- 
faction expansion of low viscosity liquids and gases may be 
considered to be approximately isentropic. Entropy-density 
graphs provide a useful way of envisioning changes in ther- 
modynamic parameters for isentropic processes. Consid- 
eration of isentropic ascent of H:O originating along various 
geotherms suggests that H:O originating in the crust (S < 4.4 J 
g-• K -•) isentropically decompresses from a supercritical fluid 
to a liquid to a partially vaporized state, whereas H:O origi- 
nating in the upper mantle isentropically decompresses from a 
supercritical fluid to a vapor to a partially condensed state, 
with at least 30% and as much as 50% of the vapor condensing. 
A similar progression of phase changes is predicted for H:O 
released from shock Hugoniot states: vaporization on release 
from shock states lower than 275 kbar, condensation upon 
release from higher pressures. Decompression entirely within 
the vapor field is the most likely behavior of CO: originating in 
kimberlite locales (assuming origin at 100 km, 1000øC, and 
isothermal ascent to 10 km, 1000øC, S = 5 J g-: K-•). A 
complex series of phase changes may occur upon isentropic 
decompression of CO: from entropies below 4.7 J g-: K -•. 
H:O and CO: originating under similar conditions in kimber- 
lite systems will not show qualitatively similar thermodynamic 
or fluid dynamic behavior because H:O may partially con- 
dense during ascent, whereas CO: will remain in the vapor- 
alone field. 
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